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Abstract— We present a multi-modal trajectory generation
and selection algorithm for real-world mapless outdoor nav-
igation in human-centered environments. Such environments
contain rich features like crosswalks, grass, and curbs, which
are easily interpretable by humans, but not by mobile robots.
We aim to compute suitable trajectories that (1) satisfy the
environment-specific traversability constraints and (2) generate
human-like paths while navigating on crosswalks, sidewalks,
etc. Our formulation uses a Conditional Variational Autoen-
coder (CVAE) generative model enhanced with traversability
constraints to generate multiple candidate trajectories for
global navigation. We develop a visual prompting approach
and leverage the Visual Language Model’s (VLM) zero-shot
ability of semantic understanding and logical reasoning to
choose the best trajectory given the contextual information
about the task. We evaluate our method in various outdoor
scenes with wheeled robots and compare the performance with
other global navigation algorithms. In practice, we observe
an average improvement of 20.81% in satisfying traversability
constraints and 28.51% in terms of human-like navigation in
four different outdoor navigation scenarios.

I. INTRODUCTION

Social robot navigation in outdoor environments requires
a good understanding of the environment to adapt to social
norms [2], such as crossing at zebra crossings and staying
on pedestrian walkways. Building a large-scale map for such
navigation is impractical because outdoor environments are
highly dynamic, with frequent changes due to construction,
road closures, and shifting pedestrian flow [3], [4]. Thus, a
mapless approach enables robots to navigate directly using
sensory input [5], [6], allowing them to adapt to environmen-
tal changes and social dynamics in real-time without relying
on a pre-built map.

Robots must not only recognize physical features, such as
walkways, crosswalks, and paved paths, but also interpret
their intended use within the environment and navigate
accordingly. For example, paved roadways may only be
temporarily used when construction blocks the sidewalk, but
they can always be used to cross a street when marked with
a zebra crossing. This involves identifying areas designated
for pedestrian movement, detecting obstacles or temporary
changes, and understanding how these elements influence
viable paths. Achieving this requires contextual reasoning to
understand and adapt to the implicit rules and expectations
of human-centered environments [7].

To build such contextual understanding of the environ-
ment, many existing methods [8], [9] rely on segmentation
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Fig. 1. Trajectories generated and selected using VL-TGS. The example
path includes three different types of scenarios: (A) flower bed and curb,
(B) corner, and (C) crosswalk. On the top, the map pin icon marks the
goal behind the building, with the red solid or dashed line highlighting the
robot’s path. On the bottom, candidate trajectories are marked in red lines
with numbers. The green path corresponds to the final trajectory.

or classification [10], [11]. However, these require exten-
sive training with ground truth data and are limited to
labeled datasets. This limitation hinders their generalizability
to unknown scenes. Recent advances in Large Language
Models (LLMs) and Vision Language Models (VLMs) have
demonstrated strong zero-shot capabilities across a wide
range of tasks, including logical reasoning [12], [13] and
visual understanding [14], [15]. VLMs, in particular, have
the ability to process and understand both visual and textual
information, enabling them to perform a wide range of
multi-modal tasks including making decisions for outdoor
navigation.

Main Results: We present VL-TGS, a novel multi-modal
approach for trajectory generation and selection in mapless
outdoor navigation (Fig. 1). Our method combines LiDAR-
based geometric information with RGB image data for com-
prehensive traversability analysis and scene understanding.
Using a CVAE-based approach, we first generate multiple
candidate trajectories based on the LiDAR scene perception.
A VLM is then employed for trajectory selection based
on the environmental context understanding through RGB
image data. While VLMs lack the capability to produce
precise spatial outputs, they can effectively utilize visual
annotations to guide the selection process among a discrete
set of coarse options [16]–[18]. By incorporating VLMs,
our approach enables human-like decision-making to select
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Fig. 2. Architecture: Our approach consists of two stages: CVAE-based trajectory generation and VLM-based trajectory selection. In the first stage,
our attention-based CVAE takes consecutive frames of LiDAR point clouds and robot velocities as input, generating multiple diverse trajectories. These
trajectories are sorted and visually marked with lines and numbers in the robot-view RGB image. In the second stage, our VLM-based trajectory selection
module identifies the best trajectory number based on semantic feasibility, ensuring it lies on the sidewalk, avoids structures, crosses at zebra crossings,
and adheres to other contextual rules.

optimal trajectories from the candidates, ensuring they align
with geometric traversability constraints while addressing the
contextual demands of global navigation.

II. APPROACH

A. Overview

Our approach computes a trajectory in a mapless envi-
ronment for global navigation. Mapless global navigation
requires a robot to reach a distant target beyond its immediate
surroundings without relying on a pre-built map. To achieve
this, we utilize multi-modal sensor data, combining both ge-
ometric and RGB visual information, to iteratively generate
local trajectories that guide the robot towards the goal. Our
approach follows a two-stage pipeline, as illustrated in Fig. 2.
In the first stage, we generate multiple candidate trajectories,
each spanning a fixed length (e.g., 10m) that satisfy the
geometric traversability constraints. Then, we select the best
trajectory based on human-like decision-making. Given a
target goal g ∈ Og , we use a GPS sensor to provide the
relative position between the target and the current location.
Our goal is to compute a trajectory, τ , that aims to provide
the best path to the goal, and that satisfies the traversability
constraints of the scenario, τ = VL-TGS(ℓ, i,o, g), where
o = {ol,ov, i} represents the robot’s observations. ol ∈ Ol

represents LiDAR observations, ov ∈ Ov indicates the
robot’s velocity, and i ∈ I represents the RGB images from
the camera. ℓ ∈ L represents the language instructions to the
Vision-Language Models (VLMs) for acquiring traversable
trajectories.

We use Conditional Variational Autoencoder (CVAE) [5]
to process the geometric information, ol ∈ Ol, from the
LiDAR sensor and the consecutive velocities, ov ∈ Ov ,
from the robot’s odometer. We efficiently generate a set of
trajectories lying in geometrically traversable areas, T =
CVAE(ol,ov). These generated trajectories cannot handle
geometrically similar but color-semantically different situ-
ations, such as crosswalks as shown in Fig. 1 (C). We use
VLMs to provide scene understanding from the RGB images.

However, the generated real-world waypoints from CVAE
and the image observations are in two different modalities. To

fuse these, we overlay the trajectories onto the images. VLMs
are then used to assess whether the trajectories align with the
contextual constraints of the environment. We assume that
VLMs can infer common-sense reasoning from the images.
We place these numbers at the end of each trajectory, starting
from 0. The numbers indicate the order of distances to the
goal, with the lowest number corresponding to the trajectory
with the shortest distance. Thus, we map the real-world
trajectories to image pixel-level objects by

(n, Tc) = M(CVAE(ol,ov),K), (1)

where K denotes the conversion matrix from the real-world
LiDAR frame to the image plane, Tc denotes the converted
trajectories, and n ∈ N are the numbers corresponding to
each trajectory.

Given the language instruction ℓ, the image i with the
converted trajectories Tc, and numbers n ∈ N , our VLM
selects one traversable trajectory based on the color-semantic
understanding of the scenarios:

τ = VLM(ℓ, i, Tc,n). (2)

We choose the trajectory with the highest probability as the
human-like trajectories, maxP (τ |ℓ, i, Tc,n). Therefore, the
problem is defined as:

max P (τ |ℓ, i, Tc,n). (3)

B. Geometry-based Trajectory Generation

The trajectory set, T , is generated by a CVAE to generate
trajectories with associated confidences. For each observation
{ol,ov}, we calculate the condition value c = fe(ol,ov)
for the CVAE decoder, where fe(·) denotes the perception
encoder. The embedding vector is then calculated from c as
z = fz(c), with fz(·) representing a neural network.

To generate a sufficient number of candidates for the
robot’s navigation, we need to create multiple diverse tra-
jectories that cover all traversable areas in front of the
robot. Since the decoder is designed to generate a single
trajectory from one embedding vector, producing a variety
of diverse trajectories requires the use of representative



and varied embedding vectors. We project the embedding
vector z onto orthogonal axes by linear transformations, each
projected vector corresponding to one traversable area. Then
we generate trajectories based on the condition c:

zk = Ak(c)z+ bk(c) = hψk
(z),

where hψk
denotes the linear transformation of z. Using each

embedding vector zk, the decoder generates a trajectory τk,
as p

(
τk|zk, c, Z̄k

)
. τk ∈ T represents generated trajectories.

zk and Z̄k are the embedding vectors of the current trajectory
and the set of other trajectory embeddings, respectively. The
training of the trajectory generator is the same as MTG [5],
where we use traversability loss, CVAE lower bound, and
diversity loss to train the model.

C. VLM-based Trajectory Selection

While the generated trajectories Tn effectively cover the
traversable areas in front of the robot [5], the deep-learning-
based generative model cannot guarantee the consistent gen-
eration of traversable trajectories. To address this, we sample
consecutive t = 2 time steps, introducing redundancy to
increase the likelihood that at least one of the generated tra-
jectories will be traversable. Given the collected trajectories
in T , we convert them to the image plane with numbers,
where we sort the trajectories in terms of heuristic, which is
the distance between the last waypoint of the trajectory and
the goal, as shown in Eq. 1.

We then project the trajectories T from the robot’s frame
to the image plane by transformation matrices K, Tc =
Pc(T ,K). Following the trajectory generation sequence, we
annotate the trajectories with numbers, n. Finally, we use
the VLM to select the best trajectory in terms of satisfying
traversability and social compliance. The annotated trajecto-
ries (n, Tc) and the current observation image i are input
into the VLM with the prompt instruction ℓ. The VLM
selects the best trajectory, τ , in terms of traversability, social
compliance, and traveling distance to the goal.

Given the selected trajectory τ , our motion planner gener-
ates the corresponding robot action a to follow it. The VLM
is re-prompted each time it returns a response. Although our
VLM-based trajectory selector operates at a relatively low
frequency, i.e., , every 2 to 4 seconds, the trajectory generator
efficiently produces 10m trajectories, ensuring the latency
remains manageable.

III. EXPRIMENTAL RESULTS

A. Implementation Details

Our approach is tested on a Clearpath Husky equipped
with a Velodyne VLP16 LiDAR, a Realsense D435i camera,
and a laptop with an Intel i7 CPU and an Nvidia GeForce
RTX 2080 GPU. We use CVAE [5] with an attention
mechanism to generate multiple trajectories (approximately
10m each) and use GPT-4V [22] as the VLM to select the
best traversable trajectory.

The training dataset [23] for our CVAE-based trajectory
generation model contains three parts: 1) LiDAR point
cloud and robot velocities, 2) binary traversability maps, 3)

randomly generated diverse targets with the shortest ground
truth trajectories to the targets. The binary traversability map
is constructed from LiDAR points and is used only for
training and evaluation and not used during inference.

To validate VL-TGS, we present qualitative and quan-
titative results compared with MTG [5], ViNT [19], No-
MaD [20], PIVOT [17], and CoNVOI [21]. We evaluate the
performance in four benchmark scenarios:

• Flower bed: A robot navigating a paved area next to a
flower bed. The robot must stay on the paved path and
avoid entering the flower bed.

• Curb: A robot navigating on a sidewalk, which is
distinctly separated from the roadway by a curb. The
robot must stay on a sidewalk or select a traversable
trajectory to go around the curb.

• Crosswalk: A robot crossing the street. The robot must
stay on the crosswalk when crossing the street.

• Behind the corner: When the target is behind an
obstruction, and there is a large open space ahead, the
straight path may lead to an obstacle. The robot must
choose a trajectory to navigate around the corner.

B. Qualitative Results

Fig. 3 shows the resulting robot trajectories corresponding
to six different approaches in four different scenarios. The
upper row shows the trajectories generated by all the com-
parison methods including ours and the lower row shows the
results of VL-TGS with the candidate trajectories (gray) and
the selected one (red).

As MTG relies solely on LiDAR’s geometric data, it is
unable to deal with traversability differences in flower beds,
curbs, and crosswalks, where structure alone provides little
distinction. The performances of ViNT and NoMaD heavily
depend on the quality of pre-built topological maps. While
they perform well when following straight paths with distinct
visual features, such as a crosswalk, they often struggle in en-
vironments with turns or significant scene variations. While
PIVOT selects the most semantically feasible trajectory from
the given candidates, it does not explicitly detect geometric
information and its random trajectory generation disregards
both geometric and semantic information, potentially re-
sulting in no viable options for the VLM to choose from.
Compared to other methods, CoNVOI generally produces
trajectories that are both geometrically and semantically
feasible. However, its zigzag motion results in non-smooth
robot movements. As shown in the bottom row of each
scenario in Fig. 3, our approach produces diverse trajectories
and selects the best one that is traversable and contextually
appropriate.

C. Quantitative Results

To further validate VL-TGS, we evaluate the methods
using two different metrics:

• Traversability: The ratio of the generated trajectory
lying on a traversable area. The binary traversability
map, initially generated using LiDAR and then man-
ually refined, is used for evaluation. This metric is
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Fig. 3. Qualitative Results: The top row shows the generated trajectories using all the methods, MTG [5] in green, ViNT [19] in blue, NoMaD [20] in
orange, PIVOT [17] in cyan, CoNVOI [21] in purple, and VL-TGS in red. The bottom row shows the candidate trajectories in gray marked with numbers
and the selected trajectory in red using VL-TGS. VL-TGS can generate and select a trajectory that is both geometrically and semantically feasible.

calculated as

tr(A, τ̂ ) =

M∑
m=1

c(A,wm), wm ∈ τ̂ , (4)

where c(·, ·) tells if the waypoint wm is in the
traversable area A.

• Fréchet Distance w.r.t. Human Tele-operation:
Fréchet Distance [24] is one of the measures of sim-
ilarity between two curves. We measure the similarity
between the trajectories generated by the methods and
human-like trajectories, which are collected by human
tele-operating the robot. A lower distance indicates a
higher degree of similarity.

Table I reports the results averaged over 20 different
frames, with five repetitions for each frame, scenario, and
method. In the Input column, L indicates LiDAR point cloud
and I indicates RGB images. While MTG, ViNT, NoMad,
and PIVOT rely on a single sensory input, CoNVOI and VL-
TGS utilize both LiDAR point clouds and RGB images. The
results demonstrate that VL-TGS outperforms other state-
of-the-art approaches in most of the cases. Specifically, we
achieve at least 3.35% and at most 47.74% improvement
in terms of average traversability, and at least 19.62% and

TABLE I
QUANTITATIVE RESULTS: COMPARISONS WITH OTHER METHODS

Metric Method Input Scenario

Flower bed Curb Crosswalk Corner

Travers-
ability
(%) ↑

MTG L 58.19 67.12 61.82 44.71
ViNT I 63.62 78.37 84.78 44.95

NoMaD I 75.64 83.13 79.24 77.38
PIVOT I 64.75 79.58 76.78 68.66

CoNVOI I+L 81.10 75.68 86.24 88.46
VL-TGS I+L 87.22 89.93 87.44 78.00

Fréchet
Distance

(m) ↓

MTG L 6.61 8.40 10.42 9.93
ViNT I 10.43 10.78 8.94 12.71

NoMaD I 7.65 8.71 11.87 9.62
PIVOT I 8.41 7.86 10.53 9.48

CoNVOI I+L 11.64 12.24 11.33 12.36
VL-TGS I+L 5.27 7.93 6.38 8.49

at most 40.99% improvement in terms of average Fréchet
distance.

We observe that MTG produces very low results in terms
of traversability. This is not only because our benchmark
scenarios were selected based on scenarios that are difficult
to detect with LiDAR, but also because MTG often fails to
consider traversability while focusing on optimality to the
goal. In terms of Fréchet distance, MTG and VL-TGS pro-
duce good results because they output smooth trajectories
similar to a human-operated trajectory we compare against.
In contrast, CoNVOI generates a linear trajectory that dif-
fers significantly from typical human-operated trajectories,
resulting in a lower similarity. CoNVOI generates short tra-
jectories using only two waypoints, reducing the likelihood
of waypoints landing in non-traversable areas and leading to
a high traversability result. However, in practice, intermediate
points may still fall into non-traversable regions. Both ViNT
and NoMaD are image-based navigation approaches, but
NoMaD generally outperforms ViNT. While both perform
well in straight-line following scenarios (e.g., crosswalks),
they tend to go off-course when robots are taking turns
or the scenarios are dynamic. Additionally, since some of
our flower bed and curb scenarios included smooth turns,
their variance is notably high. As PIVOT generates random
straight-line candidates, its performance is inconsistent, ex-
hibiting high variation in results. The result demonstrates
that VL-TGS generates human-like trajectories in human-
centered environments while ensuring good traversability.

IV. CONCLUSION

We propose VL-TGS, a novel multi-modal Trajectory
Generation and Selection approach for mapless outdoor
navigation. VL-TGS integrates a CVAE-based trajectory
generation method with a VLM-based trajectory selection
process to compute geometrically and semantically feasible,
human-like trajectories in human-centered outdoor environ-
ments. Our approach achieves a 20.81% improvement in
traversability and a 28.51% improvement in similarity to
human-operated trajectories on average.
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polygonal curves,” International Journal of Computational Geometry
& Applications, vol. 5, no. 01n02, pp. 75–91, 1995.


	Introduction
	Approach
	Overview
	Geometry-based Trajectory Generation
	VLM-based Trajectory Selection

	Exprimental Results
	Implementation Details
	Qualitative Results
	Quantitative Results

	Conclusion
	References

